首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
  国内免费   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2008年   2篇
  2006年   7篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1982年   1篇
  1975年   1篇
  1954年   2篇
  1952年   10篇
  1951年   11篇
  1950年   8篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
51.
Analysis of polyadenylation site usage of the c-myc oncogene.   总被引:8,自引:3,他引:5       下载免费PDF全文
The c-myc gene contains 2 well conserved polyadenylation (pA) sites. In all human and rat cell lines from various differentiation stages and tissue types the amount of mRNA terminating at the second pA site is 6-fold higher than the amount ending at the upstream site. This is not due to a difference in stability of the two mRNA types and therefore must be due to preferential usage of the downstream site. The usage of the pA sites is not altered during growth factor induction of quiescent cells. We have not been able to detect differences in behavior between mRNAs ending at either pA site. Both types of mRNA are induced upon treatment of cells with cycloheximide. Furthermore, we have shown that the poly(A) tail of c-myc mRNA is lost during degradation of the messenger, as was described previously for c-myc mRNA in an in vitro system. The time required for the loss of the poly(A) tail is similar to the half-life of c-myc mRNA.  相似文献   
52.
Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a ‘lure and lock’ model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the ‘lure’ step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on ‘top’ of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein–RNA complexes.  相似文献   
53.
The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5' end of a 10-nt loop, and via hydrogen bonds with the closing C-G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents "breathing" of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5' side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance.  相似文献   
54.
RNA recognition motifs (RRMs) are characterized by highly conserved regions located centrally on a beta-sheet, which forms the RNA binding surface. Variable flanking regions, such as the loop connecting beta-strands 2 and 3, are thought to be important in determining the RNA-binding specificities of individual RRMs. The N-terminal RRM of the spliceosomal U1A protein mediates binding to an RNA hairpin (U1hpII) in the U1 small nuclear RNA. In this complex, the beta(2)-beta(3) loop protrudes through the 10-nucleotide RNA loop. Shortening of the RNA loop strongly perturbs binding, suggesting that an optimal "fit" of the beta(2)-beta(3) loop into the RNA loop is an important factor in complexation. To understand this interaction further, we mutated or deleted loop residues Lys(50) and Met(51), which protrude centrally into the RNA loop but do not make any direct contacts to the bases. Using BIACORE, we analyzed the ability of these U1A mutants to bind to wild type RNAs, or RNAs with shortened loops. Alanine replacement mutations only modestly affected binding to wild type U1hpII. Interestingly, simultaneous replacement of Lys(50) and Met(51) with alanine appeared to alleviate the loss of binding caused by shortening of the RNA loop. Deletion of Lys(50) or Met(51) caused a dramatic loss in stability of the U1A.U1hpII complex. However, deletion of both residues simultaneously was much less deleterious. Simulated annealing molecular dynamics analyses suggest this is due to the ability of this mutant to rearrange flanking amino acids to substitute for the two deleted residues. The double deletion mutant also exhibited substantially reduced negative effects of RNA loop shortening, suggesting the rearranged loop is better able to accommodate a short RNA loop. Our results indicate that one of the roles of the beta(2)-beta(3) loop is to provide a steric fit into the RNA loop, thereby stabilizing the RNA.protein complex.  相似文献   
55.
To explore the reliability of Biacore-based assays, 22 study participants measured the binding of prostate-specific antigen (PSA) to a monoclonal antibody (mAb). Each participant was provided with the same reagents and a detailed experimental protocol. The mAb was immobilized on the sensor chip at three different densities and a two-step assay was used to determine the kinetic and affinity parameters of the PSA/mAb complex. First, PSA was tested over a concentration range of 2.5-600 nM to obtain k(a) information. Second, to define the k(d) of this stable antigen/antibody complex accurately, the highest PSA concentration was retested with the dissociation phase of each binding cycle monitored for 1h. All participants collected data that could be analyzed to obtain kinetic parameters for the interaction. The association and the extended-dissociation data derived from the three antibody surfaces were globally fit using a simple 1:1 interaction model. The average k(a) and k(d) for the PSA/mAb interaction as calculated from the 22 analyses were (4.1+/-0.6) x 10(4) M(-1) s(-1) and (4.5+/-0.6) x 10(-5) s(-1), respectively. Overall, the experimental standard errors in the rate constants were only approximately 14%. Based on the kinetic rate constants, the affinity (K(D)) of the PSA/mAb interaction was 1.1+/-0.2 nM.  相似文献   
56.
57.
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号